Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

نویسندگان

  • Yow-Jiun Jeng
  • Mikhail Kochukov
  • Cheryl S Watson
چکیده

BACKGROUND Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. METHODS We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively). RESULTS All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. CONCLUSIONS Responses mediated by endogenous estrogens representing different life stages are vulnerable to very low concentrations of these structurally related xenoestrogens. Because of their non-classical dose-responses, they must be studied in detail to pinpoint effective concentrations and the directions of response changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinations of Physiologic Estrogens with Xenoestrogens Alter ERK Phosphorylation Profiles in Rat Pituitary Cells

BACKGROUND Estrogens are potent nongenomic phospho-activators of extracellular-signal-regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. OBJECTIVES We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and ...

متن کامل

Bisphenol S Disrupts Estradiol-Induced Nongenomic Signaling in a Rat Pituitary Cell Line: Effects on Cell Functions

BACKGROUND Bisphenol A (BPA) is a well-known endocrine disruptor that imperfectly mimics the effects of physiologic estrogens via membrane-bound estrogen receptors (mERα, mERβ, and GPER/GPR30), thereby initiating nongenomic signaling. Bisphenol S (BPS) is an alternative to BPA in plastic consumer products and thermal paper. OBJECTIVE To characterize the nongenomic activities of BPS, we examin...

متن کامل

Mixtures of xenoestrogens disrupt estradiol-induced non-genomic signaling and downstream functions in pituitary cells

BACKGROUND Our study examines the effects of xenoestrogen mixtures on estradiol-induced non-genomic signaling and associated functional responses. Bisphenol-A, used to manufacture plastic consumer products, and nonylphenol, a surfactant, are estrogenic by a variety of assays, including altering many intracellular signaling pathways; bisphenol-S is now used as a bisphenol-A substitute. All three...

متن کامل

Xenoestrogens at Picomolar to Nanomolar Concentrations Trigger Membrane Estrogen Receptor-α–Mediated Ca2+ Fluxes and Prolactin Release in GH3/B6 Pituitary Tumor Cells

Xenoestrogens (XEs) are widespread in our environment and are known to have deleterious effects in animal (and perhaps human) populations. Acting as inappropriate estrogens, XEs are thought to interfere with endogenous estrogens such as estradiol (E2) to disrupt normal estrogenic signaling. We investigated the effects of E2 versus several XEs representing organochlorine pesticides (dieldrin, en...

متن کامل

Alkylphenol Xenoestrogens with Varying Carbon Chain Lengths Differentially and Potently Activate Signaling and Functional Responses in GH3/B6/F10 Somatomammotropes

BACKGROUND Alkylphenols varying in their side-chain lengths [ethyl-, propyl-, octyl-, and nonylphenol (EP, PP, OP, and NP, respectively)] and bisphenol A (BPA) represent a large group of structurally related xenoestrogens that have endocrine-disruptive effects. Their rapid nongenomic effects that depend on structure for cell signaling and resulting functions are unknown. OBJECTIVES We compare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010